
1.Report No.

FHWA/OH-2004/006

2. Government Accession No. 3. Recipient’s Catalog No.

5. Report Date: May, 2004 4.Title and Subtitle

Smart Sign Ordering System – Phase I 6. Performing Organization Code

7. Author(s)
Ping Yi, Yingcai Xiao

8. Performing Organization Report No.

10. Work Unit No. (TRAIS) 9. Performing Organization Name and Address
The University of Akron
Department of Civil Engineering
Akron, OH 44325-3905

11. Contract or Grant No.
State Job No. 14785(0)
13. Type of Report and Period Covered
Final Report

12. Sponsoring Agency Name and Address
Ohio Department of Transportation
1980 West Broad Street
Columbus, OH 43223

14. Sponsoring Agency Code

15. Supplementary Notes
Prepared in Cooperation with the U.S. Department of Transportation, Federal Highway
Administration
16. Abstract

 The University of Akron has developed an on-line traffic sign ordering system, the Smart Sign
Ordering System (SSOS), for the Ohio Department of Transportation (ODOT). The objective of
SSOS is to increase the efficiency of the sign ordering process by (1) reducing labor costs due to
extended review time, (2) organizing submitted orders on-line so that production schedule can be
adjusted and material usage estimated, (3) enabling on-line cost estimation and (4) proving a
means of data management for summary of orders and production.

 The implemented SSOS is an efficient tool for data exchange between the districts, Central
Office and the Sign Shop. It allows automated data entry during preparation of sign orders, and
provides on-line data review and modification capabilities. In addition, it enables querying and
sorting, and helps tracking the orders in the production and delivery phases. This tool improves
work efficiency in the sign ordering by reducing human errors and speeding up the entire order-
filling process.

17. Key Words
Traffic signs, Data exchange, Sign ordering, Sign order
selection and tracking, ODOT districts, Central Office, Sign
Shop

18. Distribution Statement
No Restrictions. This
document is available to the
public through the National
Technical Information
Service, Springfield, Virginia
22161

19. Security classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No of Pages 22. Price

1

Smart Sign Ordering System
(Phase I)

State Job No. 14785(0)

FINAL REPORT

Prepared in Cooperation with the Ohio Department of Transportation and the U.S.
Department of Transportation, Federal Highway Administration

May, 2004

by
Ping Yi, Yingcai Xiao, Natheer Khasawneh

The University of Akron

2

DISCLAIMER STATEMENT

 The contents of this report reflect the views of the authors who are responsible for the facts
and the accuracy of the data presented herein. The contents do not necessarily reflect the
official views or policies of the Ohio Department of Transportation or the Federal Highway
Administration. This report does not constitute a standard, specification or regulation.

3

Report No.

FHWA/OH-2004/006A

2. Contract or Grant No.

State Job No. 14785(0)

3. The Principal investigators numbers

Ping Yi, Yingcai Xiao

4.Title and Subtitle

 Smart Sign Ordering System – Phase I

5. Name of the Agency

Department of Civil Engineering
The University of Akron

6. EXECUTIVE SUMMARY

 The Ohio Department of Transportation (ODOT) utilizes the Ohio Standard Sign Design
Manual as a guidance of standards and specifications for the design and fabrication of traffic
signs. Because of variations in the physical characteristics and applied graphics/text of the signs,
this manual contains a large amount of complex information and uses sign codes, EMS numbers,
and graphic charts to represent individual and collective features of the signs (such as size, color,
legend, and material, etc). When ODOT districts make sign orders, engineers/technicians often
need to look into the Manual before filling the information line-by-line in the order form. There
is very little computer automation in the ordering process.

 ODOT operates a Sign Shop to fabricate signs. The districts submit standard sign orders to
the Sign Shop, and special sign orders to the Central Office for review before they are forwarded
to the Sign Shop, where all approved orders are processed in production planning, fabrication,
and subsequent shipping. Due to lack of data automation and efficient means of data exchange
and management, errors often occur in the current ordering work process.

 The University of Akron developed an on-line traffic-sign ordering system, the Smart Sign
Ordering System (SSOS). The objective of the system is to help in the sign ordering process by
(1) reducing labor costs due to extended review time, (2) organizing submitted orders on-line so
that production schedule can be adjusted and material usage estimated, (3) enabling on-line cost
estimation and (4) proving a means of data management for summary of orders and production.

 SSOS is an efficient tool for data exchange between the districts, Central Office and the Sign
Shop. It has automated functions for data entry during preparation of sign orders, and provides
on-line data review and modification capabilities. In addition, it enables querying and sorting,
and helps tracking the orders in the production and delivery phases. This system improves the
work efficiency in the sign ordering process, by reducing human errors and thus speeding up the
entire order-filling process.

 As the name suggests, SSOS is designed primarily for sign ordering management. To make the
system more useful, such as facilitating sign production management in the Sign Shop, further
development is needed to expand its functional features. The project team is currently discussing
with the Sign Shop about such needs.

 The entire project produced two products, this project report and a companion software CD
containing the SSOS software program, the setup scripts, the source code and documentations.

4

This project report describes the need, objectives, system architecture, database design, and
functionality of the system. The software program is supported by an on-line help which is built
into it for convenient access by the users. The SSOS system runs over the ODOT Intranet
backbone with the support of the central database managed by ODOT’s Office of Information
Technologies (IT). Because of this, user account management and operation of the software is
under close supervision of the IT Office.

The pilot testing of the SSOS program followed several on-site training sessions for ODOT
personnel from its districts, Central Office, and the Sign Shop. Preliminary results of the testing
have shown that use of SSOS for sign ordering is feasible, convenient, and efficient. Limitations
with the program have also been identified, which can be eliminated in future work to make the
tool more effective and user-friendly.

7. For Copies of this Report, Contact:

Ohio Department of Transportation, Ms. Monique Evans, Office of Research and Development,
(614) 728 - 6048, mevans@odot.state.oh.us

mailto:mevans@odot.state.oh.us

i

ACKNOWLEDGEMENTS

 We want to express our sincere appreciations to the SSOS project team, led by

ODOT project liaison, Mr. Jim Roth, for their active participation throughout the project.

Our deep gratitude goes to Mr. Paul Trapasso, for organizing and hosting project

discussions and training sessions, and providing his full support to the project

development effort. While representatives from each involved ODOT office have all

contributed to the project, we want to especially recognize Mr. Michael Orndorf and Mr.

Bill Puckett and their teams, for their work in the designing, development, testing,

training, and deployment phases of the project.

 Our special thanks go to Mr. Mohammad Khan, for his guidance and help to

make this project possible.

 Support to the project from the College of Arts and Sciences, the College of

Engineering, and the Office of Research Programs at The University of Akron in student

wages, tuitions, and lab facilities is acknowledged.

ii

PREFACE

“Smart Sign Ordering System” (SSOS) is an on-line traffic-sign ordering system

developed by The University of Akron for The Ohio Department of Transportation

(ODOT). Internet and database technologies, including Java, JDBC, Servlet/JSP, HTML,

and JavaScript were used to construct SSOS as a multi-tier J2EE-like application. This

report presents the technical details of the system, including its system architecture,

database design, business model, and code implementation.

iii

TABLE OF CONTENTS

I. Background

1.1 Sign Ordering and the Existing Problem …………………………1

1.2 Project Objectives ………………………………………………………… 2

II. System Specifications

2.1 Functional Specifications….….……………………………………..……….2

2.1.1 Order Lifecycle ….….……………………………………..………2

2.1.2 District Office …………………………………………..…………2

2.1.3 Central Office …….……………………………………..………... 5

2.1.4 Sign Shop …….……………………………………..……………. 6

2.1.4.1 Planning Group

2.1.4.2 Packaging Group

2.1.4.3 Transferring Group

2.1.5 Other Functions …………………………………………………7

2.1.5.1 Order Summary

2.1.5.1 User Accounts

III. Information Technologies and System Design

3.1 Java, Networking, and Database Technologies .……… ……………………9

3.2 Servlet/JSP Technology ……………………………………………...……...10

3.3 J2EE Technology …….……………………………………………………12

3.4 HTML/Java Script …………………………………………………..……. 14

3.5 Tomcat JSP Server and Testing Environment. ………..…………………15

iv

3.6 Visual Age/Web Sphere Debugging/Deploying Environment …………..16

 3.7 State Diagram ………………...………………………………………….…..17

 3.8 System Architecture …………………………………………………………18

 3.9 Use Case Diagram…………………………………………………………..19

 3.10 Database Schema ………………………………………………...……….23

IV. Implementation and Code Explanation

4.1 Database Implementation ……..……..………………………………..……..24

4.2 Business Logic Implementation ……..………………………………..……..38

4.3 User Interface Implementation ……………………. ………………...……..38

 4.3.1 Root JSP File

 4.3.2 District Module JSP Files

4.3.3 Central Module JSP Files

4.3.4 Planning Module JSP Files

4.3.5 Packing Module JSP Files

4.3.6 Transfer Module JSP Files

4.4 Security Implementation ……………………….…...………….…….....44

4.5 System Deployment …..………………..…….…...…………………….....45

 4.5.1 Database Deployment JSP

 4.5.2 Class Files Deployment

CONCLUDING REMARKS …………………………………………………… 47

Bibliography ………………………………………………………………………….48

1

Chapter I

BACKGROUND

1.1 Sign Ordering and the Existing Problem

Traffic signs are a very important tool for traffic control and transportation system

management. New traffic signs are needed in every ODOT district either because of new

roadway constructions or old sign replacements. The districts submit standard sign orders to

the Sign Shop, or to the Central Office for review of special signs before they are forwarded

to the Sign Shop, where all approved orders are processed in production planning,

fabrication, and subsequent shipping. Due to lack of data automation and efficient means of

information exchange and management between the districts, Central Office, and the Sign

Shop, order errors often affect timely production and delivery of signs.

As the local conditions in each district are different, manual input of data (codes

numbers, EMS numbers, sizes, colors, etc.) for different signs is usually slow and requires

very focused attention, and it often relies on memorization of the codes and numbers from

the Standard Sign Design Manual. Despite careful efforts by the districts, inconsistencies are

often found in the orders of special signs submitted to the Central Office. The reviewing

work at Central Office must therefore be conducted thoroughly to ensure conformation of

the design to the standards. In the production process of signs at the Sign Shop, the

production schedule for a certain type of sign depends on the quantity ordered and available

material. Generally, the Sign Shop is unaware of the collective demand for different types

2

of signs coming from the districts; likewise, when orders are initiated, the individual

districts do not know the production schedule of the types of signs they are ordering. Delays

often occur due to orders backlog or material shortage at the Sign Shop.

In order to reduce the chances for errors by the districts where orders are requested,

and shorten the amount of time needed by the Central Office to review special orders, in

November of 1998, a committee was formed involving ODOT districts, Central Office, and

the Sign Shop, to discuss improvement over the existing method for ordering signs and data

processing. The committee called for the development of a semi-automated sign ordering

system, with which engineers and technicians at the districts and Central Office can order

and review signs with data automation, whereas the Sign Shop will be able to review and

group the orders on-line to improve production planning and material management.

1.2 Project Objectives

The overall goal of the SSOS program is to improve the efficiency of the sign ordering

process by reducing errors in orders, speeding review time, and modifying order

submissions to align better with the current sign production method used by the Sign Shop.

To achieve this goal, the following objectives are proposed to meet ODOT’s requirements:

1) To reduce labor cost due to extended review time to check data accuracy by

building into SSOS design standards (for example, coding, sizing, and material use), and

allowing modification of orders on-line over the network.

3

2) To organize submitted orders to meet the needs of the Sign Shop for production

of the signs by providing ways to adjust production schedule and estimate material usage,

and group the orders by types of signs, materials used, and fabrication methods, etc.

3) To enable on-line cost estimation by setting up an automated cost analysis routine

which summarizes and updates the cost of each added or changed order.

4) To provide a means of data management so that summary of orders and sign

productions can be easily generated by the users.

To help achieve the above objectives, SSOS is constructed as a Web-based and N-

tier on-line software and utilizes the latest Internet and database technologies including Java,

Object-Oriented Design, JDBC and Servlet for back end, JSP, custom tag library and

JavaScript for front-end representation. These technologies provide the foundations for the

development of SSOS in information utilization locally and data flow between the districts,

Central Office, and the Sign Shop, thus to ensure design uniformity and consistency of

traffic signs.

4

Chapter II

SYSTEM SPECIFICATIONS

2.1 Functional Specifications

2.1.1 Order Lifecycle

An order is initially created on-line at a district office and sent to the Central Office

for approval or directly to the Sign Shop without approval if it is a bypass-sign type like

warehouse signs. The Sign Shop will handle the manufacturing based on material and other

resources, and packaging based on district. District will conclude the order when the signs

are received and archive it to history. During the lifecycle of the order, three units can

communicate about the order with each other by leaving comments in the order history field.

Every status change to the order will also be automatically documented in the history field.

For the purpose of reducing order latency, the project committee has determined that only

one order item will be permitted in each order.

2.1.2 District Office

A District Office unit has three functions. First of all, it will gather the need of signs

from either counties belonging to the district or its local warehouse, then place an order on-

line. Secondly, it will track the order status while the order goes through the approval and

fabrication process. Thirdly, upon the receipt of the manufactured signs, it will have the

responsibility to confirm the reception and archive the orders through the on-line system.

5

When placing a new order, the operator will have three ways to locate a pre-

specified sign design in the system: The technical specifications of the signs are imported

from the JIMANI program at the Sign Shop. These specifications can be accessed on-line by

its EMS number, by its sign code, or by the legend on the sign. The user will navigate with

the three choices to come to an ordering page. SSOS will automatically fill the order form

with all sign-specific features–whichever applies, including background color, applied color,

size, legend, and material, etc.. The user then specifies the quantity and other information

related to the order. The total cost of the order is automatically computed based on the

quantity ordered and the unit price of the sign. The unit price information is pre-determined

by the Sign Shop, and can be changed on the order form if necessary.. The total cost is

automatically adjusted when the user modifies the quantity ordered.

After the order is initially created it will be in a pending status for further

modification by the district operator until it is finally submitted. Viewing of a previously

submitted order is constrained to showing the order content with no modification permission

to the district operator. When the order status changed to “delivered” and the district

manager does receive the order, a confirm reception button will shown and he can choose to

archive this order after confirmation.

2.1.3 Central Office

The main function of the Central Office is to validate orders which are open for

designation, such as fully designable signs and legend designable signs. The bypass signs

6

such as warehouse sings whose attributes are all fixed will bypass the inspection of the

Central Office and will be directly sent to the Sign Shop for manufacture.

Central Office can change the condition for the bypass and specify which signs can

bypass the Central Office approval and which signs should be reviewed by the Central

Office. Central Office will have the function to review all orders whose status is “submitted”

for inspection and have an approve button thereafter. Central Office will also have the

permission to modify disqualified orders.

For the purpose of material and resource management, the Central Office needs a

generic search function that can return the certain group of orders by the combination of

district, material type, manufacture method, etc. This function is very useful when searching

documented orders or creating summaries upon various attributes such as certain district or

within certain dates.

2.1.4 Sign Shop

When the approved orders arrive at the Sign Shop, they need to group the orders by

types of signs, materials used, and fabrication methods, etc., to facilitate production planning

and material usage estimation. The Sign Shop has three sub-groups: production planning

group, packaging group and transferring group.

2.1.4.1 Planning Group

7

Planning group will handle receiving orders and make a production plan of them

based on material and production method. It will also confirm the completion of the

production process.

2.1.4.2 Packaging Group

Packaging group will gather all finished signs from manufacturing/warehouse and

package them for the delivering to the districts.

2.1.4.3 Transferring Group

Transferring group will enter the delivered orders in the old EMS system for the

record keeping purpose.

All of the three sub-groups will have the view-order function and the generic

searching function. Those are critical to all of them because planning will need them to

group the orders cross districts based on the production methods and packaging will need

them to regroup the orders by districts for delivering.

2.1.5 Other Functions

2.1.5.1 Order Summary

Basic order summary capabilities are provided to District, Central Office and Sign

Shop modules to summarize ordering statistics of total number of signs ordered and total

price of the orders. The summary can be generated by grouping orders based on order status

8

(submitted, approved, completed, delivered, etc.), type of material, or production method

used. Comprehensive summaries can be generated through customizable queries using any

query conditions. Since SSOS uses ODOT’s Sybase database system which can be accessed

through GQL (Graphical Query Language), other summaries or reports can be generated

using GQL without affecting the internal coding of the system.

2.1.5.2 User Accounts

Adding users to the system and managing the access control are done through the

Onelogin security system in use at ODOT. File security system types were used. To add a

user to the system the Onelogin user name should be added along with a string that lists the

user’s access to the system and the groups the user belongs to. The string contains one or

more groups delimited with space. The first group in the string is considered the default

group where the user is assigned to once he/she logs into the system and he/she can switch

between groups from the toolbars in the top of his/her screen.

The name of the groups are: “district” for creating orders, “central” for approving

orders, “planning” for planning for productions and completing productions, “packing” for

delivering orders, and “transfer” for archiving orders into the EMS database.

9

Chapter III

System Design

3.1 Java Technology

The Java programming language is a high-level language that can be characterized

by the features listed in Table 3.1. The Java programming language is different from many

others in that the program is both compiled and interpreted. With the compiler, a program is

first translated into an intermediate language called Java Bytecode —the platform-

independent code interpreted by the interpreter on the Java platform. The interpreter parses

and runs each Java bytecode instruction on the computer. Compilation happens just once;

interpretation occurs each time the program is executed.

• Simple • Architecture Neutral
• Object Oriented • Portable
• Distributed • High Performance
• Interpreted • Multithreaded
• Robust • Dynamic
• Secure

Table 3.1 Advantages of Java Language

You can think of Java bytecode as the machine code instructions for the Java Virtual

Machine (Java VM). Every Java interpreter, whether it is a development tool or a Web

browser that can run applets, is an implementation of the Java VM. Java bytecode helps

make "write once, run anywhere" possible—as long as a computer has a Java VM, the same

10

program written in the Java programming language can run on a Windows based PC, a

Solaris workstation, or on an iMac [1].

A platform is the hardware or software environment in which a program runs. Some of the

most popular platforms are Windows, Linux, Solaris, and MacOS. Most platforms can be

described as a combination of the operating system and hardware. The Java platform differs

from most other platforms in that it's a software-only platform that runs on top of other

hardware-based platforms.

The Java platform has two components: The Java Virtual Machine (Java VM) and

the Java Application Programming Interface (Java API). The Java API is a large collection

of ready-made software components that provide many useful capabilities, such as graphical

user interface (GUI) widgets. The Java API is grouped into libraries of related classes and

interfaces; these libraries are known as packages. Figure 3.1 depicts a program that's running

on the Java platform. As the figure shows, the Java API and the virtual machine insulate the

program from the hardware [1].

Figure 3.1 Java Runtime Layers

11

3.2 Servlet/JSP Technology

A servlet can be thought of as a server-side applet at a superficial level. Servlets are

loaded and executed by a web server in the same manner that applets are loaded and

executed by a web browser.

Web Browser Web Server http response

Figure 3.2 Basic Servlet Flow

http request

Servlet

As shown in Figure 3.2, the client (most likely a web browser) makes a request via

HTTP, the web server receives the request and forwards it to the servlet. If the servlet has

not yet been loaded, the web server will load it into the Java Virtual Machine and execute it.

The servlet will receive the HTTP request and perform some type of process. The servlet

will return a response back to the web server. The web server will forward the response to

the client. Compared to most of the server side languages, servlets have the following

advantages [2]:

1. Servlets are persistent. Servlets are loaded only once by the web server and can maintain

services (such as a database connection) between requests. CGI scripts, on the other hand,

are transient. Each time a request is made to a CGI script, it must be loaded and executed by

the web server. When the CGI script is complete, it is removed from memory and the results

are returned to the client. All program initialization (such as connecting to a database) must

be repeated each time a CGI script is used.

12

2. Servlets are fast. Since servlets only need to be loaded once, they offer much better

performance over their CGI counterparts.

3. Servlets are platform independent. As mentioned before, servlets are written in java,

which inherently brings platform independence to your development effort.

4. Servlets are extensible. Since servlets are written in java, this brings all of the other

benefits of java to your servlet. Java is a robust, object-oriented programming language,

which easily can be extended to suit your needs.

5. Servlets are secure. The web browser does not communicate directly with a servlet. The

servlet is loaded and executed by the web server. This brings a high level of security. This

means that if the web server is secure behind a firewall, then your servlet is secure as well.

3.3 J2EE Technology

J2EE multi-tiered applications are generally considered to be three-tiered

applications because they are distributed over three different locations: client machines, the

J2EE server machine, and the database or legacy machines at the back end. Three-tiered

applications that run in this way extend the standard two-tiered client and server model by

placing a multithreaded application server between the client application and back-end

storage.

J2EE applications are made up of components. A J2EE component is a self-

contained functional software unit that is assembled into a J2EE application with its related

13

classes and files and that communicates with other components. The J2EE specification

defines the following J2EE components:

• Application clients and applets are components that run on the client.

• Java Servlet and JavaServer Pages technology components are Web components that

run on the server.

• Enterprise JavaBeans components (enterprise beans) are business components that

run on the server.

J2EE components are written in the Java programming language and are compiled in

the same way as any program in the language. The difference between J2EE components

and "standard" Java classes is that J2EE components are assembled into a J2EE application,

verified to be well formed and in compliance with the J2EE specification, and deployed to

production, where they are run and managed by the J2EE server. A J2EE client can be a

Web client or an application client.

 Containers are the interface between a component and the low-level platform-

specific functionality that supports the component. Before a Web, enterprise bean, or

application client component can be executed, it must be assembled into a J2EE application

and deployed into its container. Enterprise JavaBeans (EJB) container manages the

execution of enterprise beans for J2EE applications and Web container manages the

execution of JSP page and servlet components for J2EE applications. The utilization of

14

containers on J2EE server gives the J2EE applications sturdy, managed, and secure

transactions [3].

Database

Web Container

EJB Container

Servlet JSP
Page

Enterprise
Bean

Enterprise
Bean

Client machine

Application
Client

Browser

Figure 3.3 J2EE Architecture

3.4 HTML/Java Script

HTML stands for the Hypertext Markup Language. It is not an Internet protocol. In

practical terms, HTML is a collection of platform-independent styles (indicated by markup

tags) that define the various components of a World Wide Web document. HTML is the

major language of the Internet's World Wide Web. Web sites and web pages are written in

HTML. HTML consists of a set of tags and internal commands that are embedded inside

Web pages to control the appearance and layout of Web pages, as well as links to other Web

pages.

15

JavaScript, as the name suggests, is a scripting language, which is being developed

by Netscape. JavaScript is object-based scripting language for client and server applications.

JavaScript lets you create applications that run over the Internet. It is interpreted, weakly

typed, over-permissive, embedded into an application, and serves as glue to hold together

components written in other languages. Client applications run in a browser, such as

Netscape Navigator, and server applications run on a server. Using JavaScript, you can

create dynamic HTML pages that process user input and maintain persistent data using

special objects, files, and relational databases.

With JavaScript you can easily create interactive web pages. Since the JavaScript is

not totally compatible between Netscape and Microsoft Internet Explorer, here we

implemented it in Microsoft Internet Explorer 5.0 or later.

You can embed JavaScript in an HTML document in the following ways:

1. As statements and functions within a <SCRIPT> tag.

2. By specifying a file as the JavaScript source (rather than embedding the JavaScript in the

HTML).

3. By specifying a JavaScript expression as the value of an HTML attribute as event

handlers within certain other HTML tags (mostly form elements).

Unlike HTML, JavaScript is case sensitive. JavaScript can be thought of as an extension to

HTML that allows authors to incorporate some functionality in their web pages.

16

JavaScript and Java are similar in some ways but fundamentally different in

others. The JavaScript language resembles Java but does not have Java's static typing and

strong type checking. JavaScript supports most Java expression syntax and basic control-

flow constructs. In contrast to Java's compile-time system of classes built by declarations,

JavaScript supports a runtime system based on a small number of data types representing

numeric, Boolean, and string values. JavaScript has a prototype-based object model instead

of the more common class-based object model. The prototype-based model provides

dynamic inheritance; that is, what is inherited can vary for individual objects. JavaScript

also supports functions without any special declarative requirements. Functions can be

properties of objects, executing as loosely typed methods.

3.5 Tomcat JSP Server and Testing Environment

Tomcat is the servlet container used in the official Reference Implementation for the

Java Servlet and Java Server Pages technologies. For the nature of JSP, Tomcat has a JSP

engine that will convert a JSP script to a servlet at run time and that the servlet is compiled

and loaded into java virtual machine by the servlet engine in Tomcat.

Tomcat is an open source project developed by Jakarta group, which is a non-profit

branch of Sun Microsystems. The Tomcat server we use is version 4.1. The server

administrative tool is quite simple and practical: It is stored in XML descriptor files. Tomcat

does not provide user interface for administrative management of the server, one has to

17

manually edit the XML file to have the server configured. (Setting user account and level,

password, maximum thread number, etc).

3.6 Visual Age/WebSphere Debugging/Deploying Environment

While Jakarta Project members worked on the Tomcat project which is an open

source API, IBM has reached a co-developing agreement with SUN for commercializing the

Tomcat server. The Visual Age/Web sphere bundle deployed the core of Tomcat for the

servlet/JSP server part, and builds many business feature and rich user interface as well as

robust performance on it.

Visual Age is an IDE for Java programming that will meet all purposes: GUI, Multi-

threaded, Servlet, Applet, JSP, Enterprise JavaBean, etc.. It provides excellent project

management for team work and version control as well as good compile-on-the-fly and

common debugging features. For web development, it provides a WebSphere testing

environment that will do the debugging of a JSP script by compiling to servlet class and

tracking the value and recording each line of response it generated. This is really a

breakthrough because JSP is notoriously hard to debug like all the server side scripting

languages. With the help of Visual Age, a programmer can debug a JSP page as a normal

Java file. Generally speaking, with a persistence framework and unit test environment for

WebSphere, VisualAge for Java provides a fast way to develop, test, and deploy end-to-end

e-business applications.

18

WebSphere server is an integrated multi-platform application server that supports

HTTP protocol, CGI and JSP scripting language. Overall, WebSphere application server

provides stable transactions, secure data storage and XML support.

3.7 State Diagrams

A state diagram shows the sequences of states that an object or an interaction goes

through during its life time [4]. Figure 3.4 shows the flow of an order in SSOS.

Disapprove

Pending Submitted

Start

New/Edit

Approved

In production

Complete

PackageDelivered

Archived

Received

Deleted

 Figure 3.4 Order Processing State Diagram

19

A district office can start and end an order. The district office can modify a pending

order but cannot do so after submission. Central Office can modify an order when it has not

been approved, but cannot do so after the approval. Sign Shop can modify an order when the

order comes in for fabrication but cannot do so when the order enters into production.

3.8 System Architecture

During the designing phase, J2EE architecture was exploited so as described in [3].

SSOS follows the architecture of J2EE, but does not require a J2EE container to run. SSOS

can function in any application server container that supports Servlets/JSP. Tomcat is

selected since it is supported by ODOT’s DoIT.

We have several entity beans representing each database table and session beans for

handling the order processing functions. We did not use java beans for information

transferring between JSP and middleware. Instead, we used setter and getter functions in

each bean class and object oriented parameter transferring of functions in a session beans

classes. We found this design makes designing work quite schematic and implementing

work very convenient. Since we do not use a real J2EE server, the beans are not in

container, so the entity beans could not really access the database, thus we implemented a

class called DBObjectManager which functions as a layer between entity beans and the

database server. The whole schema is shown in Figure 3.5.

 20

Figure 3.5 System Architecture

JspPages
Order

Controller
ManagerJspPages

Central

JspPages
Production

Viewer

Controller

SessionBeans

DeliveryManager

SignManager

DBObjectManagerger

ConnectionPoolingManager

DBResultSet

DBMS

Order

Sign

OrderDetaail

Package

Production

User

Query

Production Detail

ObjectServer

EntityBeans/Mode

Package
Detail

ProductionManager

OrderManager

3.9 Use Case Diagram

A Use Case Diagram

• Describes the behavior of a system from a user’s standpoint

• Has a functional description of a system and its major processes

• Provides a graphic description of who will use a system and what kinds of

interactions to expect within that system

21

• Is a group of processes that occur within the application area

• Has actors which are entities outside the area that are going to use the application

The use of the Use Case Diagram shows the relationship among actors and use cases

within a system [4]. The Use Case Diagram we will be creating tracks various functions and

those who interact with the functions within the SSOS system.

Actors in SSOS can be divided into four groups:

• District, this group includes manager and operators in a district office;

• Central Office, users in this group can view orders from all the districts and validate

them.

• Sign Shop, users in this group will check incoming orders, make plans for

production, and ship completed orders to destinations;

L og in/o ut

M a na ge O rde r

M a ke N e w O rd e r

Su b m it O rd e r
D is tr ic t

Ed it O rd e r

C lose O rde r

SSO S sys te m

M a ke Q ue ry

D e le te O rd e r

22

Figure 3.6 Use Case: District

Log in/out

Order Management

Approve Order

Edit Order
Central Office

Delete Order

Make Query

SSOS system

Run Report

 Figure 3.7 Use Case: Central Office

23

Log in/out

Plan Production
Sign Shop

Transfer Order

Modify Order

SSOS system

Make Query

Pack Order

Run Report

Figure 3.8 Use Case: Sign Shop

24

3.10 Database Schema

Figure 3.9 Database Schemas

(Note: full size image on the SSOS CD: ssos_reports\SSOSPhysicalDiagram.pdf)

25

Chapter IV

IMPLEMENTATION AND CODE EXPLANATION

4.1 Database Implementation

The database is implemented on Sybase database system, version 12.5. This DB server

supports JDBC IV connection and standard SQL query. The table property and field names

are listed below and they can be found in the file SSOSTableDefinition.pdf on the SSOS CD

under ssos_reports directory. Scripts for setting up SSOS database tables can also be found

in the same directory.

1. CreateTables.sql script will create all the necessary tables for SSOS.

2. looupdate.sql script will insert the necessary look up values.

3. ems.sql script will insert the sign information which has been exported from Jimani.
 (This script will take longer to run than the others)

26

 ORDERS

SSOS_ORDER_HISTORIES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Order History Number*

SSOS_ORDER_HISTORIES / ORDER_HISTORY_NBR

numeric(8)

Unique number assigned to each record in the History table

Order Number

SSOS_ORDER_HISTORIES / ORDER_NBR

numeric(6) Reference number to the SSOS_ORDERS table that refer to the ORDER that this history record belong to

Update Time Date

SSOS_ORDER_HISTORIES / UPDATE_TIME_DT

datetime Time and date on which the History record added

User

SSOS_ORDER_HISTORIES / USER_TXT

varchar(31) User name of the user who took the action for this history record

Action

SSOS_ORDER_HISTORIES / ACTION_TXT

varchar(31) Action that took place for this history record

Notes

SSOS_ORDER_HISTORIES / NOTES_TXT

varchar(255) Extra notes to elaborate on the action that took place when this record added

SSOS_ORDERS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Order Number*

SSOS_ORDERS / ORDER_NBR

numeric(6)

Unique number assigned to each order in SSOS

Order Number

SSOS_ORDERS / ORDER_NUM

varchar(15)

Unique number assigned to each order in SSOS. This number consists of 2-digit district numbers + '-' + 5 digit sequence number per district per fiscal
year + '-' + 2- digit fiscal year. E.g. 1-00049-02 is order no. 49 in year 2002 for district 1

Order Number

SSOS_ORDERS / ORDER_DT

datetime Time and date on the order have created

District Number

SSOS_ORDERS / DISTRICT_NBR

smallint District number who created the order

Order Sequence Number

SSOS_ORDERS / ORDER_SEQ_NBR

numeric(5) Order sequence per district per fiscal year

County Number

SSOS_ORDERS / COUNTY_NUM

varchar(3) County number for which the order belong

Comments

SSOS_ORDERS / COMMENTS_TXT

varchar(255) Comments on the order

Rout

SSOS_ORDERS / ROUTE_TXT

varchar(15) Rout number where the order belong

27

Needed Date

SSOS_ORDERS / NEEDED_DT

Datetime Date by which the order is needed

Priority

SSOS_ORDERS / PRIORITY_STTS

varchar(10) Priority by the order is needed

Quantity Ordered

SSOS_ORDERS / QTY_ORDERED_AMT

numeric(4) Number of sign that is needed by that order

Status

SSOS_ORDERS / STATUS_STTS

varchar(31) Current status of the order

Created By

SSOS_ORDERS / CREATED_BY_TXT

varchar(31) User name who created the order

EMS Number

SSOS_ORDERS / EMS_NBR

varchar(15) EMS number of the sign that is ordered

Ohio Sign Code

SSOS_ORDERS / OHIO_SIGN_CD

varchar(31) Ohio Sign code of the sign that is ordered

Federal Sign Code

SSOS_ORDERS / FED_SIGN_CD

varchar(31) Federal Sing code of the sign that is ordered

Legend Number

SSOS_ORDERS / LEGEND_NBR

numeric(6) Reference to the legend table

Legend Text

SSOS_ORDERS / LEGEND_TEXT_TXT

varchar(255) Text only (no image) description of the legend

Sign Width

SSOS_ORDERS / SIGN_WIDTH_NBR

decimal(8,2) Sign Width

Sing Height

SSOS_ORDERS / SIGN_HEIGHT_NBR

decimal(8,2) Sign Height

Sign Foot

SSOS_ORDERS / SQ_FT_NBR

decimal(8,2) Sign Size in Square Foot

Sign Cost

SSOS_ORDERS / SIGN_COST_NBR

decimal(8,2) Sign Cost

Substrate

SSOS_ORDERS / SUBSTRATE_TXT

varchar(6) Substrate type of the sign

Sheet

SSOS_ORDERS / SHEET_TXT

varchar(15) Sheeting type of the sign

Background Color

SSOS_ORDERS / BACKGROUND_COLOR_TXT

varchar(21) Sign Background color

Applied Color

SSOS_ORDERS / APPLIED_COLOR_TXT

varchar(41) Sign Applied color

Production Method

SSOS_ORDERS / PRODUCTION_METHOD_TXT

varchar(15) Sign Production Method

Material Type

SSOS_ORDERS / MATERIAL_TYPE_TXT

varchar(15) Sign Material Type

Order Type

SSOS_ORDERS / ORDER_TYPE_TXT

varchar(15) Type of the order like Standard, Special, Warehouse, etc.

 Name of the agency that is associated with order

28

 Agency SSOS_ORDERS / AGENCY_TXT varchar(15)

Total Cost

SSOS_ORDERS / TOTAL_COST_NBR

decimal(8,2) Total cost of the order usually it is Individual Cost X Number of Signs

Systematic Replacement

SSOS_ORDERS / SYS_REPALCE_IND

varchar(15) Determine whether the order is systematic replacement or not

Image Number

SSOS_ORDERS / IMAGE_NBR

numeric(6) Reference to the image table

CAD Number

SSOS_ORDERS / CAD_NBR

numeric(6) Reference to the Cad table

29

SIGNS

SSOS_IMAGES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Image Number*

SSOS_IMAGES / IMAGE_NBR

numeric(6)

Unique number assigned to each image

Image File Name

SSOS_IMAGES / IMAGE_FILE_NAME_TXT

varchar(31) File name of the image, not including the path name

Image Description

SSOS_IMAGES / IMAGE_DESCRITION_TXT

varchar(255) Description of the image

SSOS_CADS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

CAD Number*

SSOS_CADS / CAD_NBR

numeric(6)

Unique number assigned to each CAD

CAD File Name

SSOS_CADS / CAD_FILE_NAME_TXT

varchar(31) File name of the cad, not including the path name

CAD Description

SSOS_CADS / CAD_DESCRIPTION_TXT

varchar(255) Description of the CAD

SSOS_LEGENDS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Legend Number*

SSOS_LEGENDS / LEGEND_NBR

numeric(6)

Unique number assigned to each legend

HTML Legend

SSOS_LEGENDS / HTML_LEGEND_TXT

varchar(1900) Legend description including HTML tags and code

SSOS_BYPASS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Bypass Number*

SSOS_BYPASS / BYPASS_NBR

numeric(4)

Unique number assigned to each Bypass definition

SQL Statement

SSOS_BYPASS / SQL_STATEMENT_TXT

varchar(255) SQL Statement which select the signs which bypass the district

Description

SSOS_BYPASS / DESCRIPTION_TXT

varchar(255) Description of the bypass definition

30

SSOS_SIGN_PRICE
“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Attributes Text*

SSOS_SIGN_PRICE / ATTRIBUTES_TXT

varchar(255)

Attributes that select a group of signs based on Material Type, Production Method, Background Color, and Applied Color

Price

SSOS_SIGN_PRICE / PRICE_NBR

decimal(8,2) Price of the group signs matched the attributed in previous field

SSOS_EMS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

EMS Number*

SSOS_EMS / EMS_NUM

varchar(15) EMS number of the sign

Ohio Sign Code

SSOS_EMS / OHIO_SIGN_CD

varchar(31) Ohio Sign Code of the sign

Federal Sign Code

SSOS_EMS / FED_SIGN_CD

varchar(31) Federal Sign Code of sign

Legend Text

SSOS_EMS / LEGEND_TEXT_TXT

varchar(255) Legend on the sign (text only) no HTLM tag

Sign Width

SSOS_EMS / SIGN_WIDTH_NBR

decimal(8,2) Sign Width

Sign Height Number

SSOS_EMS / SIGN_HEIGHT_NBR

decimal(8,2) Sign Height

Square Foot

SSOS_EMS / SQ_FT_NBR

decimal(8,2)) Square Foot

Sign Cost

SSOS_EMS / SIGN_COST_NBR

decimal(8,2) Sign Cost

Notes

SSOS_EMS / NOTES_TXT

varchar(255) Notes on the sign

Substrate

SSOS_EMS / SUBSTRATE_TXT

varchar(6) Substrate type of the sign

Sheet

SSOS_EMS / SHEET_TXT

varchar(15) Sheeting type of the sign

Background Color

SSOS_EMS / BACKGROUND_COLOR_TXT

varchar(21) Background color of the sign

Applied Color

SSOS_EMS / APPLIED_COLOR_TXT

varchar(41) Applied color of the sign

Is Permanent

SSOS_EMS / IS_PERMANENT_IND

varchar(5) Is Permanent indicator

Warehouse Location

SSOS_EMS / WAREHOUSE_LOCATION_TXT

varchar(31) Warehouse location of the warehouse signs

31

Production Method

SSOS_EMS / PRODUCTION_METHOD_TXT

varchar(15) Production method of the sign

Screen Location

SSOS_EMS / SCREEN_LOCATION_NBR

numeric(4) Screen Location of the sign

Screen Condition

SSOS_EMS / SCREEN_CONDITION_TXT

varchar(15) Screen condition of the sign

Screen Frame Size

SSOS_EMS / SCREEN_FRAME_SIZE_TXT

varchar(15) Screen Frame Size

Sign Positive Location

SSOS_EMS / SIGN_POSITIVE_LOC_TXT

varchar(5) Sign Positive Location

Design Date

SSOS_EMS / DESIGN_DT

datetime Design Date

Specification

SSOS_EMS / SPECS_TXT

varchar(5) Specification of the sign

Open Size

SSOS_EMS / OPEN_SIZE_TXT

varchar(31) Open Size of the Sign

Sign Cost Per Square Foot

SSOS_EMS / SIGN_COST_SQFT_NBR

decimal(8,2) Sign Cost Per Square Foot

Bypass indicator

SSOS_EMS / BY_PASS_IND

varchar(15) Bypass indicator indicates whether this sign should bypass Central Office or not

Applied Color Number

SSOS_EMS / NUM_APPLIED_COL_NUM

varchar(5) Applied Color Number of the sign

32

PACKAGES

SSOS_PACKAGES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Package Number*

SSOS_PACKAGES / PACKAGE_NBR

numeric(6)

Unique number assigned to each Package in SSOS

Package Number

SSOS_PACKAGES / PACKAGE_NUM

varchar(15)

Unique number assigned to each package in SSOS. This number consists of T + 2-digit district numbers + '-' + 4 digit sequence number per district per
fiscal year + '-' + 2- digit fiscal year. E.g. T04-0012-02 is package no. 12 in year 2002 for district 4

Package Sequence Number

SSOS_PACKAGES / PACKAGE_SEQ_NBR

numeric(6) Package sequence per district per fiscal year

Notes

SSOS_PACKAGES / NOTES_TXT

varchar(255) Notes on the package

Created By

SSOS_PACKAGES / CREATED_BY_TXT

varchar(31) User name of the user who created the package

District Number

SSOS_PACKAGES / DISTRICT_NBR

smallint District number where the package was packed to

Status

SSOS_PACKAGES / STATUS_STTS

varchar(31) Status of the package

Packed Date

SSOS_PACKAGES / PACKED_DT

datetime Time and date on which the package was created

SSOS_PACKAGE_ITEMS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Package Item Number*

SSOS_PACKAGE_ITEMS / PACKAGE_ITEM_NBR

numeric(6)

Unique number assigned to each Package Item in SSOS

Package Number

SSOS_PACKAGE_ITEMS / PACKAGE_NBR

numeric(6) Reference number to Package table

Order Number

SSOS_PACKAGE_ITEMS / ORDER_NBR

numeric(6) Reference number to Order Table

Quantity Packed

SSOS_PACKAGE_ITEMS / QTY_PACKED_AMT

numeric(4) Number of signs in the package item

33

PRODUCTIONS

SSOS_PRODUCTIONS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Production Number*

SSOS_PRODUCTIONS / PRODUCTION_NBR

numeric(6)

Unique number assigned to each Production in SSOS

Planning Date

SSOS_PRODUCTIONS / PLANNING_DT

datetime Time and date on which the production was created

Notes

SSOS_PRODUCTIONS / NOTES_TXT

varchar(255) Note on the production

Created By

SSOS_PRODUCTIONS / CREATED_BY_TXT

varchar(31) User name of the user who created the production

Status

SSOS_PRODUCTIONS / STATUS_STTS

varchar(15) Status of the production

Priority

SSOS_PRODUCTIONS / PRIORITY_STTS

varchar(31) Priority of the production

Type

SSOS_PRODUCTIONS / TYPE_STTS

varchar(31) Type of the production e.g. Silk Screen, Copy By Hand, etc…

Contact Person

SSOS_PRODUCTIONS / CONTACT_PERSON_TXT

varchar(63) The name of the person who is in charge for this production

Finishing Date

SSOS_PRODUCTIONS / FINISHING_DT

datetime Time and date when the production status changed to finished

SSOS_PRODUCTION_ITEMS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Production Item Number*

SSOS_PRODUCTION_ITEMS / PRODUCTION_ITEM_NBR

numeric(6)

Unique number assigned to each Production Item in SSOS

Production Number

SSOS_PRODUCTION_ITEMS / PRODUCTION_NBR

numeric(6) Reference to production table

Order Number

SSOS_PRODUCTION_ITEMS / ORDER_NBR

numeric(6) Reference to order table

Production Quantity

SSOS_PRODUCTION_ITEMS / PRODCUTION_QTY_AMT

numeric(4) Number of signs in the production item

34

ATTRIBUTES VALUES

SSOS_ORDER_TYPES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Order Type Number*

SSOS_ORDER_TYPES / ORDER_TYPE_NBR

numeric(2)

Unique number assigned to each Order Type in SSOS

Order Type Text

SSOS_ORDER_TYPES / ORDER_TYPE_TXT

varchar(63) Order Type

Abbreviation

SSOS_ORDER_TYPES / ABBREVIATION_TXT

varchar(15) Order Type Abbreviation

Default Indicator

SSOS_ORDER_TYPES / DEFAULT_IND

varchar(15) Indicates whether this is a default record

Sequence Number

SSOS_ORDER_TYPES / SEQ_NBR

numeric(2) Sequence number used to order the records in the table

SSOS_MATERIAL_TYPES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Material Type Number*

SSOS_MATERIAL_TYPES / MATERIAL_TYPE_NBR

numeric(2)

Unique number assigned to each Material Type in SSOS

Material Type Text

SSOS_MATERIAL_TYPES / MATERIAL_TYPE_TXT

varchar(63) Material Type

Abbreviation

SSOS_MATERIAL_TYPES / ABBREVIATION_TXT

varchar(15) Material Type Abbreviation

Default Indicator

SSOS_MATERIAL_TYPES / DEFAULT_IND

varchar(15) Indicates whether this is a default record

Sequence Number

SSOS_MATERIAL_TYPES / SEQ_NBR

numeric(2) Sequence number used to order the records in the table

SSOS_SHEETING_TYPES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Sheeting Type Number*

SSOS_SHEETING_TYPES / SHEETING_TYPE_NBR

numeric(2)

Unique number assigned to each Sheeting Type in SSOS

Sheeting Type Text

SSOS_SHEETING_TYPES / SHEETING_TYPE_TXT

varchar(63) Sheeting Type

 Sheeting Type Abbreviation

35

Abbreviation SSOS_SHEETING_TYPES / ABBREVIATION_TXT varchar(15)

Default Indicator

SSOS_SHEETING_TYPES / DEFAULT_IND

varchar(15) Indicates whether this is a default record

Sequence Number

SSOS_SHEETING_TYPES / SEQ_NBR

numeric(2) Sequence number used to order the records in the table

36

SSOS_SUBSTRATE_TYPES
“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Substrate Type Number*

SSOS_SUBSTRATE_TYPES / SUBSTRATE_TYPE_NBR

numeric(2)

Unique number assigned to each Substrate Type in SSOS

Substrate Type Text

SSOS_SUBSTRATE_TYPES / SUBSTRATE_TYPE_TXT

varchar(63) Substrate Type

Abbreviation

SSOS_SUBSTRATE_TYPES / ABBREVIATION_TXT

varchar(15) Substrate Type Abbreviation

Default Indicator

SSOS_SUBSTRATE_TYPES / DEFAULT_IND

varchar(15) Indicates whether this is a default record

Sequence Number

SSOS_SUBSTRATE_TYPES / SEQ_NBR

numeric(2) Sequence number used to order the records in the table

SSOS_AGENCIES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Agency Number*

SSOS_AGENCIES / AGENCY_NBR

numeric(3)

Unique number assigned to each Agency in SSOS

Agency Text

SSOS_AGENCIES / AGENCY_TXT

varchar(63) Agency Full Name

Abbreviation

SSOS_AGENCIES / ABBREVIATION_TXT

varchar(15) Agency Name Abbreviation

Default Indicator

SSOS_AGENCIES / DEFAULT_IND

varchar(15) Indicates whether this is a default record

Sequence Number

SSOS_AGENCIES / SEQ_NBR

numeric(3) Sequence number used to order the records in the table

37

QUERIES

SSOS_QUERY_TABLES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Query Number*

SSOS_QUERY_TABLES / QUERY_NBR

numeric(4)

Unique number assigned to each Query in SSOS

Query Name

SSOS_QUERY_TABLES / QUERY_NAME_TXT

varchar(31) Query name

District Number

SSOS_QUERY_TABLES / DISTRICT_NBR

smallint District Number who created the query

Created By

SSOS_QUERY_TABLES / CREATED_BY_TXT

varchar(31) User Name of the user who created the query

SQL Statement

SSOS_QUERY_TABLES / SQL_STATEMENT_TXT

varchar(511) SQL statement that define the query

Creation Date

SSOS_QUERY_TABLES / CREATION_DT

datetime Time and date when the query was created

SSOS_QUERY_FIELDS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Field Name*

SSOS_QUERY_FIELDS / FIELD_NAME_TXT

varchar(31)

Unique number assigned to each Field Name in SSOS

Column Name

SSOS_QUERY_FIELDS / COLUMN_NAME_TXT

varchar(31) Name of the column that has the look up values

Data Type

SSOS_QUERY_FIELDS / DATA_TYPE_TXT

varchar(31) Data type of the field

Table Name

SSOS_QUERY_FIELDS / TABLE_NAME_TXT

varchar(31) The table that holds the look up values

Table Abbreviation

SSOS_QUERY_FIELDS / TABLE_ABBREVIATION_TXT

varchar(5) Abbreviation of the table name

38

REFERENCE

DISTRICT_COUNTIES

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

District Number*

DISTRICT_COUNTIES / DISTRICT_NBR

smallint

District Number

County Abbreviation Code

DISTRICT_COUNTIES / COUNTY_ABREV3_CD

char(3) 3-characters abbreviation associated with the district number

EMAIL
SSOS_EMAILS

“PRETTY” NAME

TABLE NAME / FIELD NAME

DATA TYPE

DESCRIPTION

Ssos Group*

SSOS_EMAILS / DISTRICT_NBR

Varchar(31) User Group

District Number

SSOS_EMAILS / DISTRICT_NBR

Small District Number

Email

SSOS_EMAILS / EMAIL_TXT

Varchar(255) Email addresses where the notification will be sent to

Deleted

SSOS_EMAILS / DELETED_IND

Varchar(15) Email will be sent when order status become Deleted

Pending

SSOS_EMAILS / PENDING_IND

Varchar(15) Email will be sent when order status become Pending

Approved

SSOS_EMAILS / APPROVED_IND

Varchar(15) Email will be sent when order status become Approved

Archived

SSOS_EMAILS / ARCHIVED_IND

Varchar(15) Email will be sent when order status become Archived

Received

SSOS_EMAILS / RECEIVED_IND

Varchar(15) Email will be sent when order status become Received

Completed

SSOS_EMAILS / COMPLETED_IND

Varchar(15) Email will be sent when order status become Completed

Delivered

SSOS_EMAILS / DELIVERED_IND

Varchar(15) Email will be sent when order status become Delivered

Submitted

SSOS_EMAILS / SUBMITTED_IND

Varchar(15) Email will be sent when order status become Submitted

In Production

SSOS_EMAILS / IN_PRODUCTION_IND

Varchar(15) Email will be sent when order status become In Production

Table 4.1 Database Design Tables

39

4.2 Business Logic Implementation

After the database schema and UML design are finalized, the business logics are

implemented according to the design. SSOS is implemented in Java as object-oriented classes.

Those classes will be instantiated as needed and the instantiated objects or array of objects will

be used in each transaction as parameters passed. Follow the J2EE architecture, each database

table will have a corresponding bean class. A bean class has aligned data attributes and setter and

getter methods for storing and retrieving the data attributes. These methods manage the data

transfer between the database and the program. The descriptions of the bean classes in SSOS can

be found in the SSOS CD under the ssos_javadoc directory (starting with index.html).

4.3 User Interface Implementation

User interfaces of SSOS are implemented in JSP with Java Script support for dynamic

user interaction. As introduced in Chapter I, JSP is a server side program that will be compiled

into a Java class when called from a client. Different from CGI and ASP, JSP will be compiled

once at the first access and will be loaded into the Java virtual machine for future referencing.

This feature largely reduces the turnaround time when multiple accesses happen. JSP files in

SSOS can be found in the SSOS CD under the ssos directory. The purpose of each is described

in the following tables.

40

4.3.1 Root JSP Files

Item File Category Summary

1 "authenticate.jsp" root Authentication based on database stored users (for testing
purpose only)

2 "dologin.jsp" root Authentication based on OneLogin security system (for final
deployment)

3 "login.jsp" root Welcome page for entering "username" and "password"
4 "logout.jsp" root Logout the user and close the session

4.3.2 District – District Module Files

Item File Category Summary

1 "adddesign.jsp" District Add new legend design with HTML tags and
pictures

2 "addhistory.jsp" District Add new customized record in the order
history table

3 "addhtml.jsp" District Add HTML design to the overall legend
design

4 "addtext.jsp" District Add text design to the overall legend design
5 "changeall.jsp" District Change the status of all checked orders
6 "changestatus.jsp" District Change the status of a single order

7 "createquery.jsp" District Create customized query and save it in the
database

8 "deletequery.jsp" District Delete saved query from the database
9 "design.jsp" District List sign attributes ready to make order

10 "design1.jsp" District List sign attributes ready to make order with
price management

11 "design2.jsp" District List sing attributes ready to make order
without price management

12 "doaction.jsp" District Actions (add line, add image, change
alignment) for customized HTML legend

13 "ems.jsp" District Search for signs by typing few digits of the
EMS number

14 "legend.jsp" District Search for signs in the database by providing
few letters of the legend

41

15 "legenddesign.jsp" District View the HTML legend design
16 "makeorder.jsp" District Make an order and add it to the database
17 "moveline.jsp" District Change the alignment of a line

18 "nestedorder.jsp" District Order orders in the vieworder.jsp page based
on multi columns

19 "productionmethods.jsp" District Edit/View production methods in pricing table
20 "queryordernumber.jsp" District Look up an order by giving its order number
21 "savequery.jsp" District Save a query in the database

22 "sheeting.jsp" District Search for signs by typing few digits of the
EMS number

23 "signcode.jsp" District Search for signs by typing few digits of the
Sign Code

24 "signproductionreportbean.jsp" District Generate a report for a sign production
25 "signproductionreportbean2.jsp" District Generate a report for a sign production
26 "substrate.jsp" District Pricing table entry for substrate type
27 "updateorder.jsp" District Apply order modifications in the database

28 "updatepm.jsp" District Change price table entry for Production
Method

29 "updatesheeting.jsp" District Change price table entry for sheeting
30 "updatest.jsp" District Change price table entry for substrate
31 "uploadcad.jsp" District Upload a CAD file to the server
32 "uploadimage.jsp" District Upload a sign image to the server
33 "viewcad.jsp" District View an attached CAD file
34 "viewhistory.jsp" District View the history of an order
35 "viewimage.jsp" District View an attached sign image
36 "viewmodify.jsp" District View order details in the modify mode
37 "vieworders.jsp" District View summery of a list of orders
38 "viewqueries.jsp" District View a list of saved queries
39 "viewreport.jsp" District View saved reports
40 "viewreport2.jsp" District View saved reports

42

4.3.3 Central Module JSP Files

Item File Category Summary
1 "adddesign.jsp" Central Add new legend designs with HTML tags and pictures
2 "addhistory.jsp" Central Add new customized records in the order history table
3 "addhtml.jsp" Central Add HTML designs to a legend design
4 "addtext.jsp" Central Add text designs to a legend design
5 "bypass.jsp" Central List all bypass conditions
6 "changeall.jsp" Central Change the status of a group of orders
7 "changestatus.jsp" Central Change the status of a single order
8 "createbypass.jsp" Central Add new bypass conditions
9 "createquery.jsp" Central Add new query definitions to the database
10 "deletebypass.jsp" Central Delete bypass conditions
11 "deletequery.jsp" Central Delete a saved query from the database

12 "doaction.jsp" Central Actions (add line, add image, change alignment) for a
customized HTML legend

13 "executebypass.jsp" Central Run bypass conditions
14 "legenddesign.jsp" Central View HTML legend designs
15 "moveline.jsp" Central Change the alignment of a line

16 "nestedorder.jsp" Central Order the orders in the vieworder.jsp page based on
multi columns

17 "queryordernumber.jsp" Central Lookup an order based on its order number
18 "savebypass.jsp" Central Save bypass conditions in the database
19 "savequery.jsp" Central Save query definitions in the database
20 "updateorder.jsp" Central Apply order modifications in the database
21 "uploadcad.jsp" Central Upload CAD files to the server
22 "uploadimage.jsp" Central Upload a sign image to the server
23 "viewcad.jsp" Central View an attached CAD file
24 "viewhistory.jsp" Central View the history of an order
25 "viewimage.jsp" Central View an attached sign image
26 "viewmodify.jsp" Central View order details in the modify mode
27 "vieworders.jsp" Central View summery of a list of orders
28 "viewqueries.jsp" Central View a list of saved queries

43

4.3.4 Planning Module JSP Files

Item File Category Summary
1 "adddesign.jsp" planning Add new legend designs with HTML tags and pictures
2 "addhistory.jsp" planning Add new customized records in the order history table
3 "addhtml.jsp" planning Add HTML designs to the overall legend design
4 "addtext.jsp" planning Add text designs to the overall legend design
5 "changestatus.jsp" planning Change the status of an order

6 "closeproduction.jsp" planning
Change the status of the production to "finished" and
change the status of orders inside that production to
"completed"

7 "createquery.jsp" planning Add new query definitions to the database
8 "deletequery.jsp" planning Delete saved queries from the database
9 "designscreen.jsp" planning View the printout screens for production planning

10 "doaction.jsp" planning Actions (add line, add image, change alignment) for
the customized HTML legend

11 "finishingscreen.jsp" planning View the printout screens for finishing production
12 "legenddesign.jsp" planning View an HTML legend design
13 "makeproduction.jsp" planning Save a production in the database
14 "moveline.jsp" planning Change the alignment of a line
15 "mvproduction.jsp" planning Confirmation message before creating a production

16 "nestedorder.jsp" planning Order the orders in the vieworder.jsp page based on
multi columns

17 "queryordernumber.jsp" planning Lookup an order based on its order number
18 "savequery.jsp" planning Save a query definition in the database
19 "silkscreen.jsp" planning View the printout screens for silkscreen production
20 "updateorder.jsp" planning Apply order modifications in the database
21 "uploadcad.jsp" planning Upload a CAD file to the server
22 "uploadimage.jsp" planning Upload a sign image to the server
23 "viewcad.jsp" planning View an attached CAD file
24 "viewhistory.jsp" planning View the history of an order
25 "viewimage.jsp" planning View an attached sign image
26 "viewmodify.jsp" planning View order details in the modify mode
27 "vieworders.jsp" planning View summery of a list of orders

44

28 "viewproductions.jsp" planning View a list of productions
29 "viewqueries.jsp" planning View a list of saved queries

4.3.5 Packing Module JSP Files

Item File Category Summary
1 "addhistory.jsp" packing Add new legend designs with HTML tags and pictures
2 "createquery.jsp" packing Add new query definitions to the database
3 "deletequery.jsp" packing Delete saved queries from the database
4 "makepackage.jsp" packing Save a new package in the database

5 "mvpackage.jsp" packing Confirm the creation of a package before saving it in
the database

6 "nestedorder.jsp" packing Order the orders in the vieworder.jsp page based on
multi columns

7 "queryordernumber.jsp" packing Lookup an order based on its order number
8 "querypacking.jsp" packing Search for packages using certain parameters
9 "savequery.jsp" packing Save a query definition in the database
10 "viewhistory.jsp" packing View the history of an order
11 "viewmodify.jsp" packing View order details in the modify mode
12 "vieworders.jsp" packing View summery of a list of orders
13 "viewpackages.jsp" packing View summery of a list of packages
14 "viewqueries.jsp" packing View a list of saved queries

4.3.6 Transfer Module JSP Files

Item File Category Summary
1 "addhistory.jsp" transfer Add new legend designs with HTML tags and pictures
2 "createquery.jsp" transfer Add new query definitions to the database
3 "deletequery.jsp" transfer Delete a saved query from the database

4 "nestedorder.jsp" transfer Order the orders in the vieworder.jsp page based on
multi columns

5 "queryordernumber.jsp" transfer Lookup an order based on its order number
6 "querypacking.jsp" transfer Lookup a package based on its package number

45

7 "savequery.jsp" transfer Save query definitions in the database
8 "transferpackage.jsp" transfer Change the status of a package to "transferred"
9 "viewhistory.jsp" transfer View the history of an order
10 "viewmodify.jsp" transfer View order details in the modify mode
11 "vieworders.jsp" transfer View the summery of a list of orders
12 "viewpackages.jsp" transfer View the summery of a list of packages
13 "viewqueries.jsp" transfer View a list of saved queries

4.4 Security Implementation

Security is a very important issue in web development. Normally there are two

approaches: system security and application security. At the previous attempt of SSOS prototype,

system security with Tomcat was used. Using system security has a key drawback—the

impairing of program mobility. The application must and will only be secure in the system where

the security script was run and when the application needs to be transferred to a new system, or a

new type of server, the whole security script needs to run again in that system and if that system

is not compatible with the current security script, a new script is needed for system security.

Currently application security is used by SSOS based on the OneLogin security system

implemented by DoIT as shown in Figure 4.2. Each SSOS user will have one or more groups

assigned to him/her. The first group will be the default one and the others will be on the toolbar

so he/she can switch between them. If an user failed to pass the OneLogin security system he/she

will be returned to the login page.

46
Logout.jsp

Login.jsp District.jsp

Central.jsp

Planning.jsp DoLogin.jsp

Packing.jsp

Transfer.jsp

Figure 4.2 Security Design
If any page inside finds an illegal access, it returns to Login.jsp.

4.5 System Deployment

System deployment is done in two phases first phase is the database deployment in which the

database tables are create and template data are inserted into the tables. The second phase is

deploying the jsp files and class files in the web server.

4.5.1 Database Deployment

Database deployment is done by creating the tables, run ddl/CreateTables.sql file which

will create the necessary tables for SSOS. Then run ddl/looupdate.sql file, this file will insert the

lookup values and other template data in the database tables. Finally run ddl/ems.sql file, this file

47

will insert the sign information in the database this will take about 10 minutes since it will

insert about 5,000 records in the database.

4.5.2 JSP and Class Files Deployment

Before copying the jsp files and the class files to the tomcat directory few changes maybe

necessary:

• In SSOS CD under ssos_src\ssos\database\config\ directory ConfigManager.java

file contain references to

1. webHome

2. DB driver

3. DB Url

4. dbUserName/dbPassword

5. SMTP server

6. System administrator email address

These variables should be changed to the corresponding values in the deployment

environment.

• Any reference for district_counties should be replace with

odotref.dbo.district_county these references may be found in

1. In SSOS CD ssos_src\ssos\database\manager\DBObjectManager.java

2. In SSOS CD ssos\packing\querypacking.jsp

3. In SSOS CD ssos\transfer\querypacking.jsp

48

• In SSOS CD all directories under ssos\districtcad and ssos\districtimage need to

be deleted. Note do not delete the directory itself.

• The form target in SSOS CD ssos\login.jsp should target dologin.jsp

• All references in SSOS CD ssos_src\ssos\database\config\ConfigManager.java to

HTML_LEGEND_TEXT should be changed to HTML_LEGEND_TXT

After making the above changes. Recompile the java code and copy it along with the jsp

file to the web server. The web server needs to be restarted after every new deployment.

CONCLUDING REMARKS

 The project developed a smart sign ordering system (SSOS) to assist in the sign ordering

process. Specifically, the SSOS program has built into it automated functions for data entry

during preparation of sign orders, and provides on-line data review and modification capabilities

in the sign ordering and validation process. In addition, it enables querying and sorting, and helps

tracking the orders in the production and delivery phases. The system improves the work

efficiency of the sign ordering process, reduces human errors in order handling, speeds up review

time, and aligns order submissions better with the current sign production method.

 As the name suggests, SSOS is designed primarily for sign ordering management. To make the

system more useful, such as facilitating sign production management in the Sign Shop, further

development is needed to expand its functional features. The project team is currently discussing

with the Sign Shop about such needs.

49

BIBLIOGRAPHY

1. Sun java tutorial (java.sun.com/docs/books/tutorial/).

2. Sun Java Servlet Introduction page (http://java.sun.com/products/servlet/).

3. Sun J2EE tutorial (java.sun.com/j2ee/tutorial/).

4. UML Distilled, A Brief Guide to the Standard Object Modeling Language (2nd Edition),

Martin Fowler, Kendall Scott, 2000.

5. Smart Sign Ordering System, Part III Sign Shop. Yongbin Ma, Masters Project Report,

The University of Akron, 2001.

6. Smart Sign Ordering System, Part II Central Office. Bin Yang, Masters Project Report,

The University of Akron, 2001.

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Fowler%2C Martin/102-6043231-4685755
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Scott%2C Kendall/102-6043231-4685755

	1.Report No.
	2. Government Accession No.
	3. Recipient’s Catalog No.
	4.Title and Subtitle
	6. Performing Organization Code
	7. Author(s)
	8. Performing Organization Report No.
	9. Performing Organization Name and Address
	10. Work Unit No. (TRAIS)
	11. Contract or Grant No.
	12. Sponsoring Agency Name and Address
	13. Type of Report and Period Covered
	14. Sponsoring Agency Code
	15. Supplementary Notes
	16. Abstract
	17. Key Words
	18. Distribution Statement
	19. Security classif. (of this report)
	20. Security Classif. (of this page)
	21. No of Pages
	22. Price
	FINAL REPORT

	Report No.
	FHWA/OH-2004/006A
	2. Contract or Grant No.
	State Job No. 14785(0)
	3. The Principal investigators numbers
	4.Title and Subtitle
	5. Name of the Agency
	6. EXECUTIVE SUMMARY
	7. For Copies of this Report, Contact:
	ACKNOWLEDGEMENTS
	Sign Ordering and the Existing Problem
	3.1 Java Technology
	3.2 Servlet/JSP Technology
	J2EE Technology
	3.4 HTML/Java Script
	Tomcat JSP Server and Testing Environment
	Visual Age/WebSphere Debugging/Deploying Environment
	A Use Case Diagram

